
Activation of Reactions in the Complex Region Using Microwave Irradiation

Dandan Ma,^{†,#} Xuefen Tian,^{†,#} Lifen Guo,[†] Jie Mou,[†] Sen Lin,^{*,‡} and Jianyi Ma^{*,†}

, i 610065, C i [†]I i i , i A i i i,C

, C ‡ Еi Ci,F K L i E i i,F 350002, Ci i

INTRODUCTION

ifi i i i i ifi i i ii i iff i i .Т i i i іі.Ті i i, . A i i i i i ^{1,5} F i (I) i i i i i i i i . F i' i i i i i i i ffi i i i i i i i 6,7 i () i i ifi i i i i 3.9 i i i i i В i ff i i, i i i i i i . I i i i ifi i i i i i i i i i i i

4,10-12

, i

i i

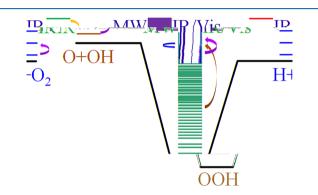
i, i i I i i Ι i i i ifi i . i I i i i i Ι i i ffi i i i i ifi i i i Ι i i i i (i i) i i Т i i i i . i i i i i , i i i iff i i i ifi i i . Т i i i i i i i i ifi i i i . F i 1, 2, i i $1^{5}2^{6}3^{1}$ 1°25312 i 3, i i iff i i $\langle 1^{5}2^{6}3^{1}|\vec{u}|$ i i i $1^{0}2^{5}3^{12}$ i i i , i i Т i i i i i -i i , i i i i i i i i i i .

R 5, 2018 : J

_

i -

R 23, 2018 : A


Р : A 30, 2018

ifi

i

iff i i i, i i . , i А 1986, i - i i i i i i i i i i i 13-15 i i

i i.^{16,17} I i i i i i i i i i i i i iii i i i i i . \mathbf{T} H + $_2$ i i i + H i i i i i ii ff i i i i H 2 i А i Fi i i 1, i i i i

- ifi -i i H + i, Η i . I i i i i i, i i, ii i . I ff i i

(2.4 ii.¹⁸ T H + 2) i i i i H₂i i i i i i . Aii i i i , i i i i і і .^{19—21} Т i H 2 i i i i i i i .F H+ i -i $_2 \leftrightarrow$ i i, Η i i i i i i i

i.**T**i i i i i iiii i i i i i i, i i iff ііі. Т i i i i i i i i i i i i i i i i . Т ii i i i i i i fi . I i i i i fi. , i fi, i i i i i i i i i i i iffi i i i

, iiiffi iii ii.

Т ifi i i i i fi i i i i i i i (D F) i i i i i i i i i fi . (F i i i i i i D F i 3(+▲ i · 12 i i 3(+ 🛶 - 6 i i .) E i i i H + i, i C▲▲↔ HC▲ i i H▲C ↔ HC▲i i , i i H**LC** i i i i i i i i i H + C i iii ffi . (1) **T** i i i i i i . (2) T i i i i i . Т . I i i i ii. + H i, H + i $_2 \leftrightarrow$ i i i i i i i

METHODS

Ι i −Li − , LG) i i i i i (E) Η 2 G (i i i (DFT) i (D 26-28). T L i i i i i i i i . I i, i LG E¹⁸ Η 2 i i i Di i fi CI+€) i i i (i i Α DFT i i .Т i 29 т G i 09 06 i i .³⁰ T D i fi ^{24,31} T Jii Η i i i i 25,31 i i 15 20 , i.I ≱fi,i i i i i (90% i), i i (5%), (5%) . A 🕰 fi i L .32 i i i Т i i i i H_2 Pi J = 0. Ti i Hiii Ji i $\hat{H} = -\frac{1}{2m_{R}}\frac{\partial^{2}}{\partial R^{2}} - \frac{1}{2m_{r}}\frac{\partial^{2}}{\partial r^{2}} + \frac{(\hat{j} - \hat{j})^{2}}{2m_{R}R^{2}} + \frac{\hat{j}^{2}}{2m_{r}r^{2}}$ + V(R, r,)(1)

Article

Rii H₂ , ri – i i, i R

A i F i'	,	i i	i i
(prmk)	iff	i i	i
i		fi i	i
i.IFi 4,	i i	i	ا لما mkl ²
H ₂			. Т
i i ii		i	
i i i i	,		i i
	iii.l		,
i i ii	i .	. 10-	
H 2	1	i 12	
Ti iii		الله الله الله	і f ⁴¹ Т
i i 			
i i i i	, i	i i i	i : :
i		i i	1 1
1		1 1	i i
Fi 4 i	i		i
i i i	i i	i	
і.Ті	i		i
i ff	iff	i i	•
Cii	i	i	i i

C 1 1			1	1 1	1
, i				i	-i
i .	F	i'		$2 \overrightarrow{\mu}_{mk} \cdot \overrightarrow{E} ^2$	² (_{mk} –
)/h² i		i	i	i	
i i		i	i i	i i	
р _{тк} ,		,	i i	i	
i , i		i			i

Fi	3	i	Ι
Н ₂ . Т			i 1089.9 (V ₃),

1388.3 (V_2), 3442.6 (V_1) ⁻¹, i i i i .T i i ii i i . 40 I i ii i . 40 I i .. IG E D DFT i i . DFT i .

i i ii . i i i, i i H + $_2 \leftrightarrow$ + H i i i i i.**T** i i i i i i ff i i ii i .

, i F i $\mathbf{f}\mathbf{f}$ i i i i ff ifi i i .47 i ii i i . (1) T i i i i i i i i i i i i i fi i i . (2) I fi i i i i i i i i ii i i i i . **T** i i i

. Т i i i i i i i ,⁴⁷ i i . i . A i i ff i i 1 i i. A i ² i i i i i i i

· i iff i i i i i (i i). **T** i i i ff i i ii i - ifi i i . i i ii H + $_2 \leftrightarrow$ + H i i ii, ii i i i i. Т Н+ Η $_2 \leftrightarrow$ + i i i

i i .Т i i i i i i i , i . Т i i i i i i i $H + C \leftrightarrow H + C_2 F + H_2 \leftrightarrow$ ii, i .^{48,49} A i i 15, i HF + H ff i i i. **T**i i i i i i i i i

i . A i

iii i i i iff ifi i, i i i i i i.

AUTHOR INFORMATION

Corresponding Authors

*(J.) E- i: i i81@163. . *(.L.) E- i: i @ . . .

ORCID 💿

Dandan Ma: 0000-0002-6146-2001 Sen Lin: 0000-0002-2288-5415

Author Contributions

[#]T i i . Notes

Tifiii.

ACKNOWLEDGMENTS

J. .L. i F i C i (91441107, 21303110 21673040). .H G , Bi Ji J Li i i .

REFERENCES

(1) , H. .; , L. .; **T** , D. L. I - ii i i i i i J. Chem. Phys. **1991**, 95, 106–120.

(2) i , A.; H i , C.; C i , F. F. C i ii : i i

. J. Chem. Phys. 1991, 94, 4928-4935.

The Journal of Physical Chemistry A

- (10) Li , .; , F.; Ji , B.; C RG.; , .; Li , K.; G , H. i i i i C + CHD₃ \rightarrow HC + CD₃
- i . J. Chem. Phys. **2014**, 141, 074310. (11) , F.; Li , J.- .; Li , K. i i CH i CHD₃ i i . Science **2011**, 331, 900– 903.
- (12) , .; , H.; RI.; C RG.; G , H.; , . ii ▲2., i i . J. Phys. Chem. Lett. 2016, 7, 3322-3327.
- 3322–3327. (13) G , .; i , F.; , K.; A i, H.; B i , L.; L , L.; , J. **T** i i i i . Tetrahedron Lett. **1986**, 27, 279–282.
- i . Chem. -
- Soc. Rev. 2005, 34, 164–178. (15) K , C. . C i i i i
- i . Angew. Chem., Int. Ed. 2004, 43, 6250–6284. , C.; (16) K i , ▲ Ę. K.; B , .; L , .;

- (16) K 1 , (16) K ; B , .; L , ., , , ., H , A. F , i , ii -i i i i : A i i . Angew. Chem., Int. Ed. 2000, 39, 3595–3598. (17) (17) , .; , B.; B , .; G , A. i i . Green Chem. 2004, 6, 128–141.
- (18) , C.; i , D.; , D. H.; Li , . .; G , H. A
- $\begin{array}{cccc} & & & & & \\ i & i & i & i & \\ H_{2} & i & i & \\ \end{array}$ i $H + _{2} \leftrightarrow +$
- H i . J. Chem. Phys. 2005, 122, 244305. (19) , C.; E , .; Hi , E. Di
- H_2 i . J. Chem. Phys. 1983, 78, 4379-4384.
- (20) B , J. B.; H , . D.; H , C. J.; T , J. .; B , J. . F i 2 3
- H ₂. J. Mol. Spectrosc. **1992**, 151, 493–512.
- (21) C , D.; B , J. .; G , B. Ti i . J. Chem. Phys. i i **1992**. 96, 1919–1930.
- (22) B , **T**. B.; B , . D.; C , A. .; D , D. J. **La.**, i . J. Chem. Phys. **1995**, 103, 4129-4137.
- (23) B , D. F. .; Gi , . ▲, C , D. C. C i i i i i i , , , i i : A i i . J. Chem. Phys.
- **1996**, 105, 7597–7604. (24) B , J. i i
- i : A i i . Phys. Chem. Chem. Phys. 2011, 13, 17930–17955.
- (25)ff, L.; Ki, .; H, .; B, . NeuralNetworks in Chemical Reaction Dynamics;ii, I .: 2012
- (26) , D.; C , .; G , H. i i i i i i i i i i i : A i i (HCCH). J. Chem. Phys. **2003**, 118, 7273.
- (27) C , .; G , H. A i i i ii i . II. ii **€**L i . J. Chem. Phys. **2001**, 114, 1467–1472. i

- i . J. Chem. Frigs. 2002, (28) L , C. A i i i i i i i i i J. Res. Natl. Bur. Stand. 1950, 45, 255-282.
- Natl. Bur. Stand. **1950**, 45, 255–282. (29) , .; \mathbf{T} , D. G. \mathbf{T} 06 i i i i i i , i , ii : \mathbf{T} i i , i , iii : \mathbf{T} i i . Theor. Chem. Acc. **2008**, 120, 215–241. (30) F i , . J.; \mathbf{T} , G. .; , H. B.; i, G. E.; , . A.; C , J. .; i, G.; B , .; , G. A.; $\mathbf{\Delta}$. , i, H., . Gaussian 09, i i A.01; G i , I .: i , C \mathbf{T} , 2009.

- i , CT, 2009.

- (31) Ji, B.; G, H. i i i i i i . J. Chem. Phys. 2013, 139, 054112.
- (CH₂). J. Phys. Chem. Lett. **2014**, 5, 2364–2369.
- (33) Li , J. C.; C i , **T**., J . Di i i ii i . Adv. Chem. Phys. **200**7, 114, 263–310.
- (34) , J.; , D.; G , H.; T , .; K , .E. I i - ii . J. Chem. Phys. 2012, 136, 014304.
- (35) L , C. .; i , .; T , J.; i , B. T.
- ii . Mol. Phys. **1992,** 76, 1147–1156. (36) , H. J.; K , . J. A CF i i . . . iii . J. Chem. Phys. 1985, 82,
- 5053-5063.
- (37) i, D.; , C.; H, T.-.; i, H.; L, G.; Li, ...; G. H. G, i i $H_2({}^2A'')$ G, H. G i i H ₂(²A") i i i J. Chem. Phys. **200**7, 126,
- 074315. (38) , . А.; G , Т. .; Т , Н. . В
- $i H_2$, A i i i i i i J. Chem. Phys. **1995**, 103, 10074. (39) D i J \overline{D}
- (39) D i, J. D.; H, A. D.; T, C. A. Hi i i -H i
- (2,0,0)←(0,0,0) H ₂ i . J. Mol. Spectrosc. 2003, 219, 163-169.
- (40) i , D. .; A , L. A i i
- i i i
- i i J. Chem. Phys. **1974**, 60, 81–85. i i i J. Chem. (41) A , A. C. Phys. 1961, 34, 1476–1484.
- (42) i i , D. E.; J , . E. I i i
- i:C i
- i-I i i i . Proc. Natl. Acad. Sci. U. S. A. **1999**, 96, 14324.
- (44) , .; Fi , B.; , .; H , H.; J , . . F -i i i , 9- i 13- i i TH i i . Chem. Phys. Lett. 2000, 332, 389–395.
- 332, 389–395. (45) C , . E.; i, J. C. A i i i i i : i : i i i H ii H + $_2$. Can. J. Chem.
- **1960**, 38, 1742–1755.
- (46) K , A. . . L
- $_{2}$ D $_{2}$ 9.8 μ J. Chem. Phys. 1979, 71, 81–88.
- (47) , J. i i i . J. Phys. Chem. A **2016**, 120, 7989–7997.
- (48) , J.; Li, J.; G , H. H + C $_{2}$ i i . J. Phys. . J. Phys.
- Chem. Lett. 2012, 3, 2482-2486. 396-399.